博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
LVS原理详解
阅读量:3962 次
发布时间:2019-05-24

本文共 4363 字,大约阅读时间需要 14 分钟。

文章目录

友情链接

LVS简介

Internet的快速增长使多媒体网络服务器面对的访问数量快速增加,服务器需要具备提供大量并发访问服务的能力,因此对于大负载的服务器来讲, CPU、I/O处理能力很快会成为瓶颈。由于单台服务器的性能总是有限的,简单的提高硬件性能并不能真正解决这个问题。为此,必须采用多服务器和负载均衡技术才能满足大量并发访问的需要。Linux 虚拟服务器(Linux Virtual Servers,LVS) 使用负载均衡技术将多台服务器组成一个虚拟服务器。它为适应快速增长的网络访问需求提供了一个负载能力易于扩展,而价格低廉的解决方案。

LVS结构与工作原理

一.LVS的结构

LVS由前端的负载均衡器(Load Balancer,LB)和后端的真实服务器(Real Server,RS)群组成。RS间可通过局域网或广域网连接。LVS的这种结构对用户是透明的,用户只能看见一台作为LB的虚拟服务器(Virtual Server),而看不到提供服务的RS群。当用户的请求发往虚拟服务器,LB根据设定的包转发策略和负载均衡调度算法将用户请求转发给RS。RS再将用户请求结果返回给用户。

二.LVS内核模型

在这里插入图片描述

LVS术语:vs:Virtual server,Directorrs:Real serverCIP:Client IP //客户端IP地址VIP:Virtual Server IP //面向客户提供服务DIP:Director IP //调度器、转发器RIP:Real Server IP //内部服务器

1.当客户端的请求到达负载均衡器的内核空间时,首先会到达PREROUTING链。

2.当内核发现请求数据包的目的地址是本机时,将数据包送往INPUT链。
3.LVS由用户空间的ipvsadm和内核空间的IPVS组成,ipvsadm用来定义规则,IPVS利用ipvsadm定义的规则工作,IPVS工作在INPUT链上,当数据包到达INPUT链时,首先会被IPVS检查,如果数据包里面的目的地址及端口没有在规则里面,那么这条数据包将被放行至用户空间。
4.如果数据包里面的目的地址及端口在规则里面,那么这条数据报文将被修改目的地址为事先定义好的后端服务器,并送往POSTROUTING链。
5.最后经由POSTROUTING链发往后端服务器

三.LVS的包转发模型

1.NAT模型:

在这里插入图片描述

①.客户端将请求发往前端的负载均衡器,请求报文源地址是CIP(客户端IP),后面统称为CIP),目标地址为VIP(负载均衡器前端地址,后面统称为VIP)。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将客户端请求报文的目标地址改为了后端服务器的RIP地址并将报文根据算法发送出去。

③.报文送到Real Server后,由于报文的目标地址是自己,所以会响应该请求,并将响应报文返还给LVS。

④.然后lvs将此报文的源地址修改为本机并发送给客户端。注意:在NAT模式中,Real Server的网关必须指向LVS,否则报文无法送达客户端。

2.DR模型:

在这里插入图片描述

①.客户端将请求发往前端的负载均衡器,请求报文源地址是CIP,目标地址为VIP。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将客户端请求报文的源MAC地址改为自己DIP的MAC地址,目标MAC改为了RIP的MAC地址,并将此包发送给RS。

③.RS发现请求报文中的目的MAC是自己,就会将次报文接收下来,处理完请求报文后,将响应报文通过lo接口送给eth0网卡直接发送给客户端。注意:需要设置lo接口的VIP不能响应本地网络内的arp请求。

3.TUN模型:

在这里插入图片描述

在这里插入图片描述
①.客户端将请求发往前端的负载均衡器,请求报文源地址是CIP,目标地址为VIP。

②.负载均衡器收到报文后,发现请求的是在规则里面存在的地址,那么它将在客户端请求报文的首部再封装一层IP报文,将源地址改为DIP,目标地址改为RIP,并将此包发送给RS。

③.RS收到请求报文后,会首先拆开第一层封装,然后发现里面还有一层IP首部的目标地址是自己lo接口上的VIP,所以会处理次请求报文,并将响应报文通过lo接口送给eth0网卡直接发送给客户端。

注意:需要设置lo接口的VIP不能在共网上出现。

总结-三种模式的适用场景及局限性
模式 适用场景
NAT 1、公网IP少
2、需要隐藏内部IP(比如游戏的登录服务器)
1、DR需要承担所有转发功能,所以瓶颈在DS上
DR 1、为了解决NAT模式的瓶颈,DR模式采用二层帧重写,提高效率 1、DS承担二层帧重写工作,当规模非常大时,DS会有瓶颈,但是如果DS足够强劲,问题不是很大。
2、由于DR模式是通过重写二层帧的方式,所以DR和DS必须在同一网络内,所以DR模式下无法跨网段。
TUN 1、为了解决DR模式无法跨网段的问题,DR采用IP层二次封装模式进行解决 1、因为DS需要进行IP层二次封装,所以会牺牲效率,在效率上会低于DR模式,但是可以跨网段。

四.LVS的调度算法

1.静态算法(4种):只根据算法进行调度 而不考虑后端服务器的实际连接情况和负载情况

①.RR:轮叫调度(Round Robin)

  调度器通过”轮叫”调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。

②.WRR:加权轮叫(Weight RR)

  调度器通过“加权轮叫”调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

③.DH:目标地址散列调度(Destination Hash )

  根据请求的目标IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

④.SH:源地址 hash(Source Hash)

  源地址散列”调度算法根据请求的源IP地址,作为散列键(HashKey)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

2.动态算法(6种):前端的调度器会根据后端真实服务器的实际连接情况来分配请求

①.LC:最少链接(Least Connections)

  调度器通过”最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用”最小连接”调度算法可以较好地均衡负载。

②.WLC:加权最少连接(默认采用的就是这种)(Weighted Least Connections)

  在集群系统中的服务器性能差异较大的情况下,调度器采用“加权最少链接”调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

③.SED:最短延迟调度(Shortest Expected Delay )

  在WLC基础上改进,Overhead = (ACTIVE+1)*256/加权,不再考虑非活动状态,把当前处于活动状态的数目+1来实现,数目最小的,接受下次请求,+1的目的是为了考虑加权的时候,非活动连接过多缺陷:当权限过大的时候,会倒置空闲服务器一直处于无连接状态。

④.NQ永不排队/最少队列调度(Never Queue Scheduling NQ)

  无需队列。如果有台 realserver的连接数=0就直接分配过去,不需要再进行sed运算,保证不会有一个主机很空间。在SED基础上无论+几,第二次一定给下一个,保证不会有一个主机不会很空闲着,不考虑非活动连接,才用NQ,SED要考虑活动状态连接,对于DNS的UDP不需要考虑非活动连接,而httpd的处于保持状态的服务就需要考虑非活动连接给服务器的压力。

⑤.LBLC:基于局部性的最少链接(locality-Based Least Connections)

  基于局部性的最少链接”调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。

⑥. LBLCR:带复制的基于局部性最少连接(Locality-Based Least Connections with Replication)

  带复制的基于局部性最少链接”调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务器组,按”最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

五.LVS工作方法

ipvs:内核中的协议栈实现:ipvsadm一个主机可以同时定义多个 cluster service,一个ipvs服务至上应该有一个rsipvsadm命令用法ipvsadmin -A|E -t|u|f service-address [-s scheduler]ipvsadmin -D 删除-A :增加-E:修改-t :tcp-u:upd-f:firewall markservice-address:VIP地址-s:权重,默认为wlcipvsadm管理群集RS命令ipvsadm -a|e -t |u|f service-address -r server-address[-g|i|m][-w weight]-a:增加-e:修改-r server-addressRS的地址vip[:port]-g,gateway,dr-l.ipip,tun-m ,nat-w wgight,指定权重查看:ipvsadm -L | l [o[toptions]-n,数字格式显示IP和PORT-c,显示ipvs的连接-stats:统计数据--rate:速率

转载地址:http://zhezi.baihongyu.com/

你可能感兴趣的文章
charAt()方法和charCodeAt()方法—— 从字符串中选取一个字符.
查看>>
(1)Pascal 程序结构和基本语句
查看>>
LoadRunner之——脚本分析
查看>>
Advanced searching - fields reference
查看>>
Advanced searching - operators reference
查看>>
LoadRunner之——Java vuser
查看>>
LoadRunner之——场景创建、设置、运行
查看>>
QTP基本使用——Recovery Scenarios
查看>>
Ruby 的优缺点
查看>>
Ruby 教程(一)
查看>>
Ruby 教程(二)
查看>>
Android——简介
查看>>
Ruby 教程(三)
查看>>
Ruby 教程(四)
查看>>
GHOST后只剩下一个分区后的解决方法
查看>>
局部变量、全局变量、对象变量、类变量
查看>>
手动测试 VS 自动测试
查看>>
QTP基本使用——WORD
查看>>
QTP基本使用——Excel
查看>>
QTP基本使用——检查焦点
查看>>